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Natural Frequencies of a Tapered Cantilever Beam of Constant
Thickness and Linearly Tapered Width

Aleksandar Nikoli¢™, Slavisa Salini¢'
! Faculty of Mechanical and Civil Engineering
University of Kragujevac, 36000 Kraljevo, Dositejeva 19 (Serbia),

A method for determination of natural frequencies of a tapered cantilever beam in free bending vibration by a rigid
multibody system is proposed. The considerations are performed in the frame of Euler-Bernoulli beam theory. The method
consists of two steps. In the first step, the tapered cantilever beam is approximated by n flexible straight beam, and after
that all of the n segments are divided into k segments. In the second step, all of the flexible straight beams are replaced by
three rigid beams connected through revolute and prismatic joints with the corresponding springs in them. The results of

the proposed method are compared with similar methods proposed in literature.
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1. INTRODUCTION

Research on dynamic characteristics of flexible
tapered cantilever beams is very important in different
engineering fields. These types of beams appear most
frequently as the result of a need for saving in material,
reduction of weight, better utilization of material,
increased rigidity, etc. A significant number of papers
dedicated to the solution of this problem have been
recently published.

This paper presents a new approach to
approximative determination of natural frequencies of free
vibration of this type of beams using the main ideas
presented in [6] and [7]. A short analysis and adaptation of
approaches from [1], [2], and [3] will be carried out for the
purpose of comparing the obtained results with the results
from similar approaches so that the procedure of analysis
of this type of beams could be feasible. Comparison
between the presented approach and the two mentioned

approaches will be performed on the example from [4],
where exact values of frequencies of the stepped cantilever
beam are determined. Also, the results of the presented
approach will be compared with the results from [5],
where the tapered cantilever beam of a rectangular cross
section, constant thickness and linearly tapered width is
analysed.

2. A RIGID MULTIBODY MODEL OF A TAPERED
CANTILEVER BEAM

Let us consider free vibration of the flexible tapered
cantilever beam with the length L, where its end A is
clamped, and the end B is free, as shown in Fig. 1. The
beam thickness /4 is constant, whereas its width changes
linearly along the beam, starting from b4 in the clamped
end of the beam, up to bp at the free end:

fh(x):szb"x—i-bA,OSx<L, )

Figure 1: Tapered cantilever beam
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A rigid multibody model of the tapered cantilever
beam will be created in two steps. In the first step, the
exact shape of the cantilever beam is approximated with n
flexible segments of constant width. In the second step,
each n flexible segment is divided into £ equal flexible
segments. In further text, the division in the first step will
be called primary division, and the division in the second
step will be called secondary division. Primary division
should approximate the exact shape of the cantilever beam
in the best way, and secondary division should
additionally increase accuracy.

The parameters which define each of the obtained
segments are:

-the modulus of elasticity of the material E,
-the shear modulus of the material:

E
MRET{FYn @

-the Poisson coefficient /£,

-the density of the material p,
-the length of the segment after primary division:

L =£,i=1,...,n, 3)
n
-the width of the segment after primary division:
L. .
L=l
=] @)

i—1 L
FAON A +?'), l<i<n,
k=1

-the area of the cross section of the segment after primary
division 4, ,
-the axial moment of inertia for the principal axis z of the
cross section of the beam after primary division 7, ,

The approximative shape of the tapered beam after
primary and secondary divisions is shown in Fig. 2 by
dashed lines.

2.1. Our approach

Each of n'k flexible segments is divided into three
rigid segments, where the first and second rigid segments
are interconnected through a prismatic joint, and the
second and third segments through a revolute joint (see
Fig. 3a).
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The springs of corresponding stiffness are placed in
the joints. The approximative model of the flexible
tapered cantilever beam is thus obtained in the form of an
opened kinematic chain without branching made of 2nk
rigid segments connected through the corresponding joints
and springs in them (see Fig. 4). Let us determine the
parameters of the observed mechanical system which are
necessary for further considerations.

The stiffness of springs in the joints of the i-th
segment based on [7], for the case of bending of the beam
in one plane, are:
12E -1, El.

L ek L.J ’ )

i i

c, =k’

where the indices r and s are:
r=2j-1+2k(i-1),

ol T (6)
s=2j+2k(i-1),i=1n,j=1Lk,
The length of the rigid segments is:
I/
[ =L, 7
r O]
3,
=1 ,j<k,
2" /
L=41'+1",j=kni<n, 6))
ll.’,jzk/\izn,
where
’ L ” L
IF=—] =1 9
Y2kt 4k ©
The mass of the rigid segments is:
mr :pA[lr’
p(Aili,+Al.+lli”),j=k/\i<n, (10)
m, =
pA[ls’

The position of the centre of mass of each rigid
segment is defined by the local position vector of the
centre of mass in relation to the beginning of the segment:

.= . . (11)

Figure 2: An approximation of the cantilever tapered beam by stepped beams
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Figure 3: The rigid multibody model of the i-th flexible beam segment: a) Presented approach, b) Ref. [1], c) Ref- [2], [3]
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Figure 4: The rigid multibody model of the flexible beam
where om o,
& =051, Joe = 12(a’ +7),
2
0.541, T+ Al (li +0.5-7; ) ) ) pAl.ll.’ L(aiz +ll.,2)+ ¢ _IL
& = - ~ , j=kni<n, 12 2
G AL+ A 2 (14)
0.5-1 ” ” ;1
v —_— Jc\.{ = +pA[+ll[ i(a[2+1 + I[ ’ ) +[l[ + ll_ - §c‘\. ] s
m. =0,{, =0, u=12kn, (12) 12 2
The local vectors of the rigid segments are: j=kni<n,
p,=[l, 0 0] ,u=12kn, (13) M (g2 412)
A

The moment of inertia of the rigid segment in relation to
the axis ¢ perpendicular to the plane of rotation is:

Natural Frequencies of a Tapered Cantilever Beam of Constant Thickness and Linearly Tapered Width
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where:
h, if the cross section is rectangular ,

8,=1\3 (15)

——d., if the cross section is circular
2 ’

The unit vectors of the axis of the u-th joint are:
[0 1 0], if the u-th joint is prizmatic,
e, = . (16)
[0 0 1], if the u-th joint is revolute,

where u =1,2kn.
The coefficients y, and y, represent identifiers of

the joint type, where it holds that:

1, if the u-th joint is prismatic,
W = (17

|0, if the u-th joint is revolute,

as well as that 7, =1—y,
2.2. Approach from [1]

Each of nk flexible segments is divided into three
rigid segments, where the first and second rigid segments,
as well as the third and fourth ones, are interconnected
with a revolute joint (see Fig. 3b). The springs of the
corresponding rigidity are placed in those joints. Similarly
to our approach, the approximative model of the flexible
tapered cantilever beam in the form of an open kinematic
chain without branching made of 2n-k rigid segments
connected with the corresponding joints and springs in
them is obtained. Let us determine the parameters of the
observed mechanical system which are necessary for
further considerations.

The stiffnesses of springs in the joints of the i-th
segment based on [1] are:

EI . —
¢, =c =2k LZl , i=1n, (18)

i

where the indices 7 and s are defined in the expression (6).
The length of the rigid segments is:

=172 (19)
p
21, j <k,
L=+l j=kni<n, (20)
I/, j=kni=n,
where
[ =p e = p @

and where p = l(l —LJ is the coefficient of division of
2L 3

the beam. Reference [1] shows that, especially for this
value of the coefficient, the assumed model of the beam is
reduced to a simpler shape which contains springs only in
the joints (see Fig. 3b). In an opposite case, the model of
the beam also contains a spring which connects the first
and third rigid bodies, and then the process of modelling
the flexible beam by this method becomes considerably
complicated.

The local position vector of the centre of mass of
rigid segments p_ , the mass of the rigid segments m, and
the moment of inertia of the rigid segment in relation to
the axis ¢ J., (u=12k-n) may be defined from the

expressions (10)-(14), where Z['i ll.” are given in the
expression (21).
The unit vectors of the axis of the u-th joint are:

e,=[0 0 1]. (22)
All joints in the kinematic chain are revolute, so that:
X, =Lu=12nk (23)

2.3. Approach from [2], [3]

References [2] and [3] propose discretization of
each of n-k flexible segments so that they are divided into
two equal rigid segments which are interconnected by one
cylindrical spring and one revolute spring with the
corresponding rigidity (see Fig. 3c). This division results
in an open kinematic chain without branching made of n-k
rigid segments connected by the corresponding springs.
The stiffnesses of springs in the joints of the u-th segment
based on [2] and [3] are:

GA El

¢, =k—~L,c,, =—2, 24
ke = (24)
where the index s is:
s=j+k(i-1),i=Ln,j=1k, (25)
The length of the rigid segments is:
21, j <k,
L=3l'+1",j=kni<n, (26)
I, j=kni=n,
where
, L » L
=) =T @7
2k 2k

The local position vector of the centre of mass of
the rigid segments p_, the local vectors of the rigid

segments p,, the mass of the rigid segments m, and the
moment of inertia of the rigid segment of constant width in
relation to the axis ¢ J, , (u=L2k-n) may be

determined from the expressions (10)-(14), where

l,.',l ,.” i/, are given in (26) and (27).

3. EIGENVALUE PROBLEM

Reference [1] and our approach use relative
coordinates for description of the system, whereas [2] and
[3] use absolute coordinates. That is the reason why the
formation of differential equations of motion will be
presented for the cases of using relative coordinates (for
our approach and the approach in [1]) and absolute
coordinates (for the approaches in [2] and [3]).
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3.1. Relative coordinates

The potential energy of the system of springs in the

joints reads:
2kn

1, =—Zc,,qu, (28)

where ¢, (u=1,...,2kn) are relatlve joint displacements.

The kinetic energy of the system is
2kn 2kn

a 1 p=1
where an overdot denotes the derivative with respect to
time, q=[q1.9>....,q2:)7 1is the vector of generalized
coordinates and

2kn ar Tar
maﬂ(q):; ua aqﬂ XXl c8 eﬁ} (30)

the metric tensor coefficient of the inertia matrix of the
system. For more details see [9].

In Equation (30), m, is the mass of the u-th rigid
segment in the chain, J., is its axial moment of inertia

relative to the principal axis which is perpendicular to the
plane of beam bending, r., is the vector of position of the
centre of masses of the rigid body (V,) in relation to the
inertial frame Axyz. The configuration
q=[01=0.....q2.=0]" in which ¢, (r)=0, ¢, (:)=0
(u=1,...,2kn) corresponds to the equilibrium position of the
flexible beam shown in Fig. 4 in the absence of gravity
and force at the free end of the beam B. Linearized
differential equations of motion of the considered system
of rigid bodies in the surroundings of the equilibrium
position read (see [8]):

Mq+Kq=0,,,, (31)
where 0,, 1€R*™ K =diag(c,,...,
matrix, and Me R
members are:

2kn ar ar
=S (2 ()
5 \Ho ; aqa " aqﬂ w

2kn

+D Xl (40) €5(a0). (@, B=12kn),
u=p3

(32)
The partial derivative of the position vector r., relative to
generalized coordinate g« at the position qo reads:

Zato(4y) (Z TR (qo)j

k=a+1

or,
> | ={+y.e,(q,), a<u,
9o _
b Xo€a (qo)qu, (q0)+Zaea (q0)=
0, a>u

¢,,) 1s the stiffness

is the mass matrix, whose

oa=u,

(33)
3.2. Absolute coordinates

The potential energy of the system of springs in the
joints reads:

m = %i(cM"Agof v, Av?), (34)
v=1

where Ag, and Ay, are relative joint displacements which,
expressed as a function of absolute coordinates, read:

Ap,=¢,-9,,, (35)
Ayv :yv_Zlv¢v_yvfl_zrvflwvfl’ ¢’0 :O’ yO :O (36)
z,=¢, , zn,=1,-¢, 37

The absolute coordinates y, and ¢, represent

transverse displacements of the centres of masses and
rotation about that centres of the v-th rigid segment in
relation to the horizontal position, respectively. Axial
displacements of the centres of masses of the v-th rigid
segment are neglected because of the assumption of small
deformations of the beam.

The kinetic energy of the system is
kn

T——Z(m y,+ ) (38)

where an overdot denotes the derivative with respect to
time. By applying the Lagrange equations of the second
kind for the case of conservative systems,

d(dL) dL _0
dt a)'/v 8y ’

Ay OL ) Oy, (39)
dt\ 99, a(p

where v=1,k-n, and L =T —TI is the Lagrange function,
differential equations of motion of the mechanical system
are obtained in the form:

Mzi+Kz=0,,,, (40)
where 0y, 1€R¥*! z=[z), 2,...,21,]" is the vector of
absolute coordinates, and it holds that z=[y,, ¢,] T
(v=1,....kn).

The mass matrix is:

M =diagM,,;, M,,,...M, ), 41)
where:
M, =diag(m,.J, ), (42)
The stiffness matrix is:
K, .. 0 0 0 . 0 ]
O v=1,v—1 v=1,v O . O
K= 0 . K, K, K, . 0 |, 43
0 Kv+1,v Kv+l,v+1
0 0 0 0 K,,
where
- —c, z¥,_
K, = R )
’ cr 1zlv_1 —¢y tCp zr,_zl,
[ ¢, +e ¢zl +epzr,
K, = Cy,, TCu, , (45)
’ —c, zI, +cp zr, ) 5
! ' +er zl” + Cr 2,

—c ezl ]
- . i . (46)

—cp zr, —¢y top zlv aZ, |

v,v+l1

For more details, see [2] or [3].
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Finally, the eigenvalue problem, formulated on the basis of
(31) and (40), reads:

(K - an) v=0,, (47)

where o is the natural frequency of free vibration of the
flexible tapered cantilever beam, and ve R*" ! represents
the eigenvector which corresponds to the given frequency.
Approximate values of natural frequencies of the
considered cantilever beam are obtained by solving the
eigenvalue problem (47).

4. NUMERICAL EXAMPLE AND VERIFICATION OF
THE METHOD

Verification of the efficiency of the presented
method will be performed through two examples. The first
example will treat the problem of determination of natural
frequencies of the flexible cantilever beam with three
stepped changes of the circular cross section. Thus,
primary division is carried out in advance, so that n=4, and
the influence of secondary divisions of the beam on the
accuracy of our method will be analyzed. Exact values of
natural frequencies of such a beam are determined in [4],
so it is a good example for comparing the accuracy of the
proposed approach with the relevant approaches presented
in [1] and [2]. The second example analyzes the tapered
cantilever beam of a rectangular cross section, constant
thickness and linearly variable width. The influence of
primary division on the accuracy of our method will be
analyzed in this example. The results achieved by using
our approach will be compared with the results from [5].

VIII International Conference “Heavy Machinery-HM 2014, Zlatibor, 25-28 June 2014

4.1. Example 1

Let us observe the flexible cantilever beam with three
stepped changes of the circular cross section with the
following characteristics:

- Young’s modulus: E=2.068x10"" N/m*,
- mass density: p=7850 kg /m’,
- total length: L=2.0 m,
- diameter: d, =0.03m,
- diameters ratio:
d,/d =08 d,/d =0.65,d,/d =0.25,
- length of the segments:
L,=025L, L,=03L, L,=0.25L, L, =0.2L,
- area of the cross section of the segment after
primary division of the beam:
rd’
‘4
- axial moment of inertia for the principal axis z of
the cross section of the beam:

_nd!

zu 64 >
In further considerations, for convenience of comparisons
with the results from paper [4], the non-dimensional

frequency coefficients AL =4%/@’p A, L' /(EI,.) are used.

Using the above theory, the approximative numerical
values of the first three non-dimensional frequency
coefficients are obtained. These frequency coefficients
along with the corresponding relative errors are shown in
Table 1. The errors are calculated as:

approximative value 100—100[%].

>

exact value

A
2 B
4
y X o t=} 5 >
R I - I A R s ey
/Z
L

Figure 5: The three-stepped cantilever beam

Table 1 gives the comparative results obtained by using all
three presented methods of discretization depending on the
number of secondary divisions of each segment of the
beam. It also shows relative errors of the obtained values
of frequencies in relation to the exact values of frequencies
from [4]. It can be noticed that the values of obtained
frequencies, at the increased number of secondary
divisions of beam segments, converge faster toward the
exact values if our approach is used, exept for the third

frequency where the approach from [2] is slightly better.
Besides, the relative error in determination of the first
frequency with one division of the beam segment is 0.059
%, 1.e. the error is far smaller than 1%. This fact is
particularly important if it is taken into account that the
values of the first frequency are of most significance in
studying dynamic characteristics of various technical
objects.
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4.2. Example 2

Let the tapered cantilever beam of constant
thickness and linearly tapered width be given (see Fig. 1).
The material of the beam is the same as in the previous
example. The beam length is L =0.5 m, and the thickness

is £ =0.005 m.
The area of the cross section of the segment after primary
division of the beam is:
A, =bh,
The axial moment of inertia for the principal axis z
of the cross section of the beam is:

_bn
T
The beam width at the beginning and the end of the
beam will be varied in order to obtain necessary relations
of these dimensions for the needs of comparison of results.
That is why the parameter related to the degree of beam

tapering is introduced:

c=1- Z—B,

A
Let us also introduce the concept of the i-th non-
dimensional frequency @, , which is connected with the i-th

(43)

frequency @, (rad /s) in the following way:

A 4
[T),': p lL .a)i’
E.Izi

Table 2 gives the values of the first three non-
dimensional frequencies, where the value of the parameter
¢ changes from 0 to 1, with the step 0.1, and for =10 and
n=20, respectively. It can be noticed that there is very
good agreement between our results and the results from
[5]. It is obvious that the convergence of frequency toward
the values from [5] is faster at smaller values of the
parameter ¢, i.e. when the beam is less tapered (see Fig. 6
and Fig. 7). In that case it is enough for the number of
segments of constant width (primary divisions) to be n=10,
and to achieve the  satisfactory  accuracy.

(49)

Table 1: Natural frequencies of the cantilever beam — comparison of the present paper results and the results from [4]

Nugrllcber Non-dimensional frequency coefficients
divisions BL ByL BiL
Relative error [%)] Relative error [%] Relative error [%]
ou |G Tom | O | gomer | fom | O | om | fom
P pep 1] | ref[2] | *PPT [1] ref.[2] | PP | refi[1] | ref[2]
2.51159 | 2.51000 | 2.56814 | 4.31315 | 4.43415 | 4.87846 | 5.47403 | 5.79999 | 6.10351
: 0.059 -0.004 2.312 -2.975 -0.254 9.741 -5.938 -0.337 4.878
5 2.51200 | 2.49390 | 2.52396 | 4.43100 | 4.43826 | 4.53171 | 5.74267 | 5.77220 | 5.86927
0.076 -0.645 0.552 -0.324 -0.161 1.941 -1.322 -0.815 0.853
2.51114 | 2.49524 | 2.51612 | 4.44160 | 4.43855 | 4.48271 | 5.78781 | 5.77304 | 5.84107
3 0.042 -0.592 0.240 -0.086 -0.155 0.839 -0.546 -0.800 0.369
2.51051 | 2.49909 | 2.51213 | 4.44470 | 4.44009 | 4.45832 | 5.80856 | 5.78317 | 5.82606
> 0.016 -0.439 0.081 -0.016 -0.120 0.290 -0.190 -0.626 0.111
2.51030 | 2.50156 | 2.51104 | 4.44514 | 4.44120 | 4.45167 | 5.81386 | 5.79064 | 5.82184
7 0.008 -0.340 0.037 -0.006 -0.095 0.141 -0.099 -0.498 0.038
2.51018 | 2.50375 | 2.51046 | 4.44527 | 4.44222 | 4.44815 | 5.81658 | 5.79763 | 5.81958
10 0.003 -0.253 0.014 -0.003 -0.072 0.061 -0.052 -0.378 -0.001
Exact
sol[zlfti]on 2.5101 4.44542 5.81961
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Figure 6. Absolute error of natural frequency of: straight beam (c=0) in comparison with [5]
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Table 2: Natural frequencies of the cantilever beam — comparison of the present paper results and the results from [5]

Non-dimensional frequencies

c “ o, ,
Our results Ref. Our results Our results
n=10 | n=20 [5] =10 T n=20 | ReEIS] 50 T =20 1 Ref I3l

0 3.5169 | 3.5162 | 3.5160 | 21.8890 | 21.9984 | 22.035 | 60.3636 | 61.3642 | 61.6970
0.1 | 3.6307 | 3.6309 | 3.6310 | 22.0992 | 22.2156 | 22.254 | 60.5474 | 61.5696 | 61.9100
0.2 | 3.7612 | 3.7624 | 3.7629 | 22.3361 | 22.4607 | 22.502 | 60.7573 | 61.8044 | 62.1530
0.3 | 39125 | 3.9152 | 3.9160 | 22.6073 | 22.7417 | 22.786 | 61.0019 | 62.0784 | 62.436
0.4 | 4.0913 | 4.0956 | 4.0970 | 22.9240 | 23.0704 | 24.021 | 61.2942 | 62.4068 | 62.776
0.5 | 43067 | 43130 | 4.3152 | 23.3039 | 23.4659 | 23.519 | 61.6556 | 62.8145 | 63.199
0.6 | 45728 | 4.5822 | 4.5853 | 23.7773 | 23.9606 | 24.021 | 62.1238 | 63.3458 | 63.751
0.7 | 49134 | 49271 | 49317 | 24.4012 | 24.6162 | 24.687 | 62.7728 | 64.0892 | 64.527
0.8 | 53703 | 5.3907 | 5.3976 | 25.2983 | 25.5668 | 25.656 | 63.7744 | 65.2537 | 65.747
0.9 | 6.0272 | 6.0595 | 6.0704 | 26.7946 | 27.1727 | 27.299 | 65.6527 | 67.4945 | 68.115

1 7.0805 | 7.1374 | 7.1422 | 30.1108 | 30.8063 | 30.970 | 71.1455 | 74.3753 | 75.653

A.Nikoli¢, S.Salini¢



VIII International Conference “Heavy Machinery-HM 2014, Zlatibor, 25-28 June 2014 E.69

5. CONCLUSION

This paper presents a new method of approximative
determination of frequency of the tapered cantilever beam
which can serve as an alternative to relevant approaches
from [1], [2] and [3]. In such discretization of the flexible
tapered cantilever beam, a well-developed methodology
for mechanics of a system of rigid bodies is used for the
formation of the characteristic problem. It results in
obtaining a computer-efficient algorithm for determination
of approximate values of frequencies of the beam.
Comparison of our method with the results from relevant
approaches in [1], [2] and [3] was carried out on the
example from paper [4]. It was shown that the relative
errors of obtained frequencies in relation to the exact
values given in paper [4] are smaller for first two
frequencies if our approach is used than if the approaches
from [1], [2] and [3] are used. For the third frequency
approach from [2] give slightly better results. Then the
results of our approach are compared with the results from
[5]. In [5], the Initial value method was used for analysis
of free vibration of the beam, where the Runge-Kutta
method of numerical integration was wused for
determination of frequencies. That is why this algorithm is
demanding in terms of computing. It was shown that the
results obtained by using our approach agree to a
considerable extent with the results from [5].

Based on everything previously stated, it is clear
that the presented method is less demanding in terms of
computing than the algorithm presented in [5], and it
achieves better results than the relevant algorithms from
[1], [2] and [3] for first two natural frequencies. The
presented methodology can also be used for treating more
complex models of flexible beams, frames, etc.

However, the question remains how the position of
the prismatic joint in the rigid multibody model of the
tapered cantilever beam affects the accuracy of the
exposed algorithm. We assume that prismatic joint is
placed in the middle of the first half of the beam. In [1] the
authors have shown for which partition coefficient p
algorithm achieved the best accuracy and simple
approximate model of the beam. This analysis will be the
subject of further research by authors.
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