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A method for determination of natural frequencies of a tapered cantilever beam in free bending vibration by a rigid 
multibody system is proposed.  The considerations are performed in the frame of Euler-Bernoulli beam theory. The method 
consists of two steps. In the first step, the tapered cantilever beam is approximated by n flexible straight beam, and after 
that all of the n segments are divided into k segments. In the second step, all of the flexible straight beams are replaced by 
three rigid beams connected through revolute and prismatic joints with the corresponding springs in them. The results of 
the proposed method are compared with similar methods proposed in literature. 
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1. INTRODUCTION 
 
Research on dynamic characteristics of flexible 

tapered cantilever beams is very important in different 
engineering fields. These types of beams appear most 
frequently as the result of a need for saving in material, 
reduction of weight, better utilization of material, 
increased rigidity, etc. A significant number of papers 
dedicated to the solution of this problem have been 
recently published.  

This paper presents a new approach to 
approximative determination of natural frequencies of free 
vibration of this type of beams using the main ideas 
presented in [6] and [7]. A short analysis and adaptation of 
approaches from [1], [2], and [3] will be carried out for the 
purpose of comparing the obtained results with the results 
from similar approaches so that the procedure of analysis 
of this type of beams could be feasible. Comparison 
between the presented approach and the two mentioned  

.

approaches will be performed on the example from [4], 
where exact values of frequencies of the stepped cantilever 
beam are determined. Also, the results of the presented 
approach will be compared with the results from [5], 
where the tapered cantilever beam of a rectangular cross 
section, constant thickness and linearly tapered width is 
analysed. 
 

2.  A RIGID MULTIBODY MODEL OF A TAPERED 
CANTILEVER BEAM 

 
Let us consider free vibration of the flexible tapered 

cantilever beam with the length L, where its end A is 
clamped, and the end B is free, as shown in Fig. 1. The 
beam thickness h is constant, whereas its width changes 
linearly along the beam, starting from bA  in the clamped 
end of the beam,  up to bB  at the free end:  

 ( ) , 0 ,B A
b A

b bf x x b x L
L
−= + ≤ <  (1) 

 

 
Figure 1: Tapered cantilever beam 

E.61



VIII International Conference “Heavy Machinery-HM 2014”, Zlatibor, 25-28 June 2014 

A.Nikolić, S.Šalinić 

A rigid multibody model of the tapered cantilever 
beam will be created in two steps. In the first step, the 
exact shape of the cantilever beam is approximated with n 
flexible segments of constant width. In the second step, 
each n flexible segment is divided into k equal flexible 
segments. In further text, the division in the first step will 
be called primary division, and the division in the second 
step will be called secondary division. Primary division 
should approximate the exact shape of the cantilever beam 
in the best way, and secondary division should 
additionally increase accuracy. 

The parameters which define each of the obtained 
segments are: 
-the modulus of elasticity of the material E, 
-the shear modulus of the material:  

 ( ) ,
2 1

EG
µ

=
+

 (2) 

-the Poisson coefficient µ , 
-the density of the material ρ, 
-the length of the segment after primary division: 

 , 1,..., ,i
LL i n
n

= =  (3) 

-the width of the segment after primary division:  

 

1

1

1

( ), 1,
2

( ), 1 ,
2

b

i i
i

b k
k

Lf i
b

L
f L i n

−

=

 == 
 + < ≤



 (4) 

-the area of the cross section of the segment after primary 
division iA , 
-the axial moment of inertia for the principal axis z of the 
cross section of the beam after primary division ziI , 

The approximative shape of the tapered beam after 
primary and secondary divisions is shown in Fig. 2 by 
dashed lines.  

2.1. Our approach 
 
Each of n·k flexible segments is divided into three 

rigid segments, where the first and second rigid segments 
are interconnected through a prismatic joint, and the 
second and third segments through a revolute joint (see 
Fig. 3a).  

The springs of corresponding stiffness are placed in 
the joints.  The approximative model of the flexible 
tapered cantilever beam is thus obtained in the form of an 
opened kinematic chain without branching made of 2n·k 
rigid segments connected through the corresponding joints 
and springs in them (see Fig. 4). Let us determine the 
parameters of the observed mechanical system which are 
necessary for further considerations.  

The stiffness of springs in the joints of the i-th 
segment based on [7], for the case of bending of the beam 
in one plane, are: 

 3
3

12
, ,zi zi

r s
ii

E I EI
c k c k

LL
⋅= =  (5) 

where the indices r and s are:   

 
( )

( )
2 1 2 1 ,

2 2 1 , 1, , 1, ,

r j k i

s j k i i n j k

= − + −

= + − = =
 (6) 

The length of the rigid segments is: 

 ,
2
i

r
l

l
′

=  (7) 

 

3 , ,
2

, ,

, ,

i

s i i

i

l j k

l l l j k i n

l j k i n

 ′ <
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 (8) 

where 

 1, ,
2 4

i i
i i

L L
l l

k k
+′ ′′= =  (9) 

The mass of the rigid segments is: 

 ( )1

,

, ,

,

r i r

i i i i
s

i s

m Al

Al A l j k i n
m

Al

ρ

ρ

ρ
+

=
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 (10) 

The position of the centre of mass of each rigid 
segment is defined by the local position vector of the 
centre of mass in relation to the beginning of the segment: 

 ,
u u u u

T

c c c cξ ( ) =  ρ  (11) 

 

 
Figure 2: An approximation of the cantilever tapered beam by stepped beams 
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a)                                                                           b) 

 

 
c) 

Figure 3: The rigid multibody model of the i-th flexible beam segment: a) Presented approach, b) Ref. [1], c) Ref. [2], [3] 
 

 

 
Figure 4: The rigid multibody model of the  flexible beam  
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 0, 0, 1,2 ,
u uc c u kn( )= = =  (12) 

The local vectors of the rigid segments are: 
 [ ]0 0 , 1,2 ,T

u ul u kn= =ρ  (13) 
The moment of inertia of the rigid segment in relation to 
the axis )  perpendicular to the plane of rotation is: 
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where: 
, if the cross section is rectangular ,

3 , if the cross section is circular ,
2

i
i

h

d


= 


a  (15) 

The unit vectors of the axis of the u-th joint are: 

[ ]
[ ]
0 1 0 , if the -th joint is prizmatic,

0 0 1 , if the -th joint is revolute,

T

u T

u

u

= 


e  (16) 

where 1, 2 .u kn=  
The coefficients uχ  and uχ  represent identifiers of 

the joint type, where it holds that: 

 
1, if the -th joint is prismatic,
0, if the -th joint is revolute,u

u
u

χ = 


 (17) 

as well as that 1u uχ χ= −  

2.2. Approach from [1] 
 
Each of n·k flexible segments is divided into three 

rigid segments, where the first and second rigid segments, 
as well as the third and fourth ones, are interconnected 
with a revolute joint (see Fig. 3b). The springs of the 
corresponding rigidity are placed in those joints. Similarly 
to our approach, the approximative model of the flexible 
tapered cantilever beam in the form of an open kinematic 
chain without branching made of 2n·k rigid segments 
connected with the corresponding joints  and springs in 
them is obtained.  Let us determine the parameters of the 
observed mechanical system which are necessary for 
further considerations.  

The stiffnesses of springs in the joints of the i-th 
segment based on [1] are: 

 2 , 1, ,zi
r s

i

EI
c c k i n

L
= = =  (18) 

where the indices r and s are defined in the expression (6).  
The length of the rigid segments is: 

 1 2 ,r i
pl l

p
− ′=  (19) 
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where 

 1, ,i i
i i

L L
l p l p

k k
+′ ′′= =  (21) 

and where 1 11
2 3

p  = − 
 

 is the coefficient of division of 

the beam. Reference [1] shows that, especially for this 
value of the coefficient, the assumed model of the beam is 
reduced to a simpler shape which contains springs only in 
the joints (see Fig. 3b). In an opposite case, the model of 
the beam also contains a spring which connects the first 
and third rigid bodies, and then the process of modelling 
the flexible beam by this method becomes considerably 
complicated. 

The local position vector of the centre of mass of 
rigid segments 

ucρ , the mass of the rigid segments um  and 
the moment of inertia of the rigid segment in relation to 
the axis )  

ucJ )  ( 1,2u k n= ⋅ ) may be defined from the 

expressions (10)-(14), where ii il l′ ′′ are given in the 
expression (21). 
The unit vectors of the axis of the u-th joint are: 
 [ ]0 0 1 .T

u =e  (22) 
All joints in the kinematic chain are revolute, so that: 
 1, 1,2u u n kχ = = ⋅  (23) 

2.3. Approach from [2], [3] 
 
References [2] and [3] propose discretization of 

each of n⋅k flexible segments so that they are divided into 
two equal rigid segments which are interconnected by one 
cylindrical spring and one revolute spring with the 
corresponding rigidity (see Fig. 3c). This division results 
in an open kinematic chain without branching made of n⋅k  
rigid segments connected by the corresponding springs.   
The stiffnesses of springs in the joints of the u-th segment 
based on [2] and [3] are: 

 , ,
s s

i zi
T M

ii

GA EI
c k c

LL
= =  (24) 

where the index s is: 
 ( )1 , 1, , 1, ,s j k i i n j k= + − = =  (25) 
The length of the rigid segments is: 
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where 

 1, ,
2 2

i i
i i

L L
l l

k k
+′ ′′= =  (27) 

The local position vector of the centre of mass of 
the rigid segments 

ucρ , the local vectors of the rigid 

segments uρ , the mass of the rigid segments um  and the 
moment of inertia of the rigid segment of constant width in 
relation to the axis )  

ucJ )  ( 1,2u k n= ⋅ ) may be 
determined from the expressions (10)-(14), where 

, ii i sl l l′ ′′ are given in (26) and (27). 
 

3. EIGENVALUE PROBLEM 
Reference [1] and our approach use relative 

coordinates for description of the system, whereas [2] and 
[3] use absolute coordinates. That is the reason why the 
formation of differential equations of motion will be 
presented for the cases of using relative coordinates (for 
our approach and the approach in [1]) and absolute 
coordinates (for the approaches in [2] and [3]). 
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3.1.  Relative coordinates 
 
The potential energy of the system of springs in the 

joints reads: 

 
2

2

=1

1 ,
2

kn

c u u
u

c q+ =   (28) 

where qu (u=1,…,2kn) are relative joint displacements. 
The kinetic energy of the system is  

 ( )
2 2

1 1

1 ,
2

kn kn

T m q qαβ α β
α β= =

=  q    (29) 

where an overdot denotes the derivative with respect to 
time, q=[q1,q2,…,q2kn]T is the vector of generalized 
coordinates and  

 ( )
2

=
,u u

u

Tkn
c c T

u C
u

m m J
q qαβ α β ) α β

β α β

χ χ
 ∂ ∂
 = +
 ∂ ∂ 


r r

q e e  (30) 

the metric tensor coefficient of the inertia matrix of the 
system. For more details see [9]. 

In Equation (30), mu is the mass of the u-th rigid 
segment in the chain, 

uCJ )  is its axial moment of inertia 
relative to the principal axis which is perpendicular to the 
plane of beam bending, rcu is the vector of position of the 
centre of masses of the rigid body (Vu) in relation to the 
inertial frame Axyz. The configuration 
q0=[q1=0,…,q2kn=0]T in which ( ) 0,uq t ≡ ( ) 0uq t ≡  
(u=1,...,2kn) corresponds to the equilibrium position of the 
flexible beam shown in Fig. 4 in the absence of gravity 
and force at the free end of the beam B. Linearized 
differential equations of motion of the considered system 
of rigid bodies in the surroundings of the equilibrium 
position read (see [8]): 
 2 1,n×+ =Mq Kq 0  (31) 
where 02n 1∈R2kn×1, 1 2( ,..., )kndiag c c=K  is the stiffness 
matrix, and M∈R2kn×2kn  is the mass matrix, whose 
members are: 

 
( )

( ) ( )
0 0

2

0
=

2

0 0 , ( , 1, 2 ),

u u

u

T
kn

c c
i

u

kn
T

C
u

m m
q q

J kn

αβ
β α β

α β ) α β
β

χ χ α β
=

 ∂ ∂ 
=     ∂ ∂   

+ =





q q

r r
q

e q e q

 (32) 
The partial derivative of the position vector rcu relative to 
generalized coordinate qα at the position q0 reads: 
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(33) 

3.2. Absolute coordinates 
 
The potential energy of the system of springs in the 

joints reads: 

 ( )2 2

=1

1 ,
2 v v

kn

c M v T v
v

c c yϕ+ = ∆ + ∆  (34) 

where ∆φv and ∆yv are relative joint displacements which, 
expressed as a function of absolute coordinates, read:  
 1,v v vϕ ϕ ϕ −∆ = −  (35) 
 1 1 1 0 0, 0, 0.v v v v v v vy y zl y zr yϕ ϕ ϕ− − −∆ = − − − = =  (36) 
 ,

vv czl ξ= ,
vv v czr l ξ= −  (37) 

The absolute coordinates vy  and vϕ  represent 
transverse displacements of the centres of masses and 
rotation about that centres of the v-th rigid segment in 
relation to the horizontal position, respectively. Axial 
displacements of the centres of masses of the v-th rigid 
segment are neglected because of the assumption of small 
deformations of the beam. 
The kinetic energy of the system is  

 ( )2 2

1

1 ,
2 v

kn

v v c v
v

T m y J ) ϕ
=

= +   (38) 

where an overdot denotes the derivative with respect to 
time. By applying the Lagrange equations of the second 
kind for the case of conservative systems,  

 0,
v v

d L L
dt y y
 ∂ ∂− = ∂ ∂ 

  

 0,
v v

d L L
dt ϕ ϕ
 ∂ ∂− = ∂ ∂ 

 (39) 

where 1, ,v k n= ⋅  and L T= − +  is the Lagrange function, 
differential equations of motion of the mechanical system 
are obtained in the form: 
 2 1,kn×+ =Mz Kz 0  (40) 
where 02kn 1∈R2kn×1, z=[z1, z2,…,zkn]T is the vector of 
absolute coordinates, and it holds that zv=[yv, φv] T  
(v=1,…,kn). 
The mass matrix is: 
 1,1 2,2 ,( , ,..., ),kn kndiagM = M M M  (41) 
where: 
 ( ),v , ,

vv v cdiag m J )=M  (42) 

The stiffness matrix is: 
1,1

1, 1 1,

, 1 , , 1

1, 1, 1

,

.. 0 0 0 .. 0
.. .. : : : : :
0 .. 0 .. 0
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: :: : : : :: :
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where: 
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For more details, see [2] or [3]. 
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Finally, the eigenvalue problem, formulated on the basis of 
(31) and (40), reads: 
 ( )2

2 1,knω ×=K - M v 0  (47) 

where ω is the natural frequency of free vibration of the 
flexible tapered cantilever beam, and v∈R2kn 1 represents  
the eigenvector which corresponds to the given frequency. 
Approximate values of natural frequencies of the 
considered cantilever beam are obtained by solving the  
eigenvalue problem (47). 
 
4. NUMERICAL EXAMPLE AND VERIFICATION OF 

THE METHOD  
 
Verification of the efficiency of the presented 

method will be performed through two examples. The first 
example will treat the problem of determination of natural 
frequencies of the flexible cantilever beam with three 
stepped changes of the circular cross section. Thus, 
primary division is carried out in advance, so that n=4, and 
the influence of secondary divisions of the beam on the 
accuracy of our method will be analyzed.  Exact values of 
natural frequencies of such a beam are determined in [4], 
so it is a good example for comparing the accuracy of the 
proposed approach with the relevant approaches presented 
in [1] and [2]. The second example analyzes the tapered  
cantilever beam of a rectangular cross section, constant 
thickness and linearly variable width. The influence of 
primary division on the accuracy of our method will be 
analyzed in this example. The results achieved by using 
our approach will be compared with the results from [5]. 

4.1. Example 1 

Let us observe the flexible cantilever beam with three 
stepped changes of the circular cross section with the 
following characteristics: 

- Young’s modulus: 211 /10068.2 mNE ×= , 
- mass density: 37850 / ,kg mρ =  
- total length: mL 0.2= , 
- diameter: 1 0.03 ,d m=  
- diameters ratio:   

2 1/ 0.8d d =  65.0/ 13 =dd , 25.0/ 14 =dd , 
- length of the segments:  

LL 25.01 = , LL 3.02 = , LL 25.03 = , 4 0.2 ,L L=  
- area of the cross section of the segment after 

primary division of the beam: 
2

,
4

u
u

d
A

π=
 

- axial moment of inertia for the principal axis z of 
the cross section of the beam: 

4

,
64

u
zu

d
I

π=
 

In further considerations, for convenience of comparisons 
with the results from paper [4], the non-dimensional 

frequency coefficients 4
1

4
1

2 )/( zEILAL ρωβ =  are used. 
Using the above theory, the approximative numerical 
values of the first three non-dimensional frequency 
coefficients are obtained. These frequency coefficients 
along with the corresponding relative errors are shown in 
Table 1. The errors are calculated as: 

 [%].100100 −⋅
valueexact

valueiveapproximat  

 

 
Figure 5: The three-stepped cantilever beam  

 
Table 1 gives the comparative results obtained by using all 
three presented methods of discretization depending on the 
number of secondary divisions of each segment of the 
beam. It also shows relative errors of the obtained values 
of frequencies in relation to the exact values of frequencies 
from [4]. It can be noticed that the values of obtained 
frequencies, at the increased number of secondary 
divisions of beam segments, converge faster toward the 
exact values if our approach is used, exept for the third 

frequency where the approach from [2] is slightly better. 
Besides, the relative error in determination of the first 
frequency with one division of the beam segment is 0.059 
%, i.e. the error is far smaller than 1%. This fact is 
particularly important if it is taken into account that the 
values of the first frequency are of most significance in 
studying dynamic characteristics of various technical 
objects. 
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4.2. Example 2 
 

Let the tapered cantilever beam of constant 
thickness and linearly tapered width be given (see Fig. 1). 
The material of the beam is the same as in the previous 
example. The beam length is 0.5L m= , and the thickness 
is 0.005 .h m=  
The area of the cross section of the segment after primary 
division of the beam is: 

,u uA b h=  
The axial moment of inertia for the principal axis z 

of the cross section of the beam is: 
3

,
12
u

zu
b h

I =  

The beam width at the beginning and the end of the 
beam will be varied in order to obtain necessary relations 
of these dimensions for the needs of comparison of results. 
That is why the parameter related to the degree of beam 
tapering is introduced: 

 1 ,B

A

bc
b

= −  (48) 

Let us also introduce the concept of the i-th non-
dimensional frequency iω , which is connected with the i-th 
frequency ( )/i rad sω   in the following way: 

 
4

1 ,i i
zi

A L
E I
ρω ω= ⋅

⋅
 (49) 

Table 2 gives the values of the first three non-
dimensional frequencies, where the value of the parameter 
c changes from 0 to 1, with the step 0.1, and for n=10 and 
n=20, respectively. It can be noticed that there is very 
good agreement between our results and the results from 
[5]. It is obvious that the convergence of frequency toward 
the values from [5] is faster at smaller values of the 
parameter c, i.e. when the beam is less tapered (see Fig. 6 
and Fig. 7). In that case it is enough for the number of 
segments of constant width (primary divisions) to be n=10, 
and to achieve the satisfactory accuracy.  

 
 

Table 1: Natural frequencies of the cantilever beam – comparison of the present paper results and the results from [4] 
 

Number 
of 

divisions 
Non-dimensional frequency coefficients 

1Lβ  2Lβ  3Lβ  

Relative error [%] Relative error [%] Relative error [%] 
 Our 

appr. 

Appr. 
from 

ref. [1] 

Appr. 
from 

ref. [2] 

Our 
appr. 

Appr. 
from ref. 

[1] 

Appr. 
from 

ref. [2] 

Our 
appr. 

Appr. 
from 

ref. [1] 

Appr. 
from 

ref. [2] 

1 
2.51159 2.51000 2.56814 4.31315 4.43415 4.87846 5.47403 5.79999 6.10351 

0.059 -0.004 2.312 -2.975 -0.254 9.741 -5.938 -0.337 4.878 

2 
2.51200 2.49390 2.52396 4.43100 4.43826 4.53171 5.74267 5.77220 5.86927 

0.076 -0.645 0.552 -0.324 -0.161 1.941 -1.322 -0.815 0.853 

3 
2.51114 2.49524 2.51612 4.44160 4.43855 4.48271 5.78781 5.77304 5.84107 

0.042 -0.592 0.240 -0.086 -0.155 0.839 -0.546 -0.800 0.369 

5 
2.51051 2.49909 2.51213 4.44470 4.44009 4.45832 5.80856 5.78317 5.82606 

0.016 -0.439 0.081 -0.016 -0.120 0.290 -0.190 -0.626 0.111 

7 
2.51030 2.50156 2.51104 4.44514 4.44120 4.45167 5.81386 5.79064 5.82184 

0.008 -0.340 0.037 -0.006 -0.095 0.141 -0.099 -0.498 0.038 

10 
2.51018 2.50375 2.51046 4.44527 4.44222 4.44815 5.81658 5.79763 5.81958 

0.003 -0.253 0.014 -0.003 -0.072 0.061 -0.052 -0.378 -0.001 
Exact 

solution 
[4 ] 

2.5101 4.44542 5.81961 
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Figure 6.  Absolute error of natural frequency of: straight beam (c=0) in comparison with [5] 

 

 
Figure 7.  Absolute error of natural frequency of: maximum tapered beam (c=1), 

in comparison with [5] 
 

Table 2: Natural frequencies of the cantilever beam – comparison of the present paper results and the results from [5] 
 

c 

Non-dimensional frequencies 

1ω  2ω  3ω  
Our results Ref. 

[5] 
Our results Ref. [5] Our results Ref. [5] n=10 n=20 n=10 n=20 n=10 n=20 

0 3.5169 3.5162 3.5160 21.8890 21.9984 22.035 60.3636 61.3642 61.6970 
0.1 3.6307 3.6309 3.6310 22.0992 22.2156 22.254 60.5474 61.5696 61.9100 
0.2 3.7612 3.7624 3.7629 22.3361 22.4607 22.502 60.7573 61.8044 62.1530 
0.3 3.9125 3.9152 3.9160 22.6073 22.7417 22.786 61.0019 62.0784 62.436 
0.4 4.0913 4.0956 4.0970 22.9240 23.0704 24.021 61.2942 62.4068 62.776 
0.5 4.3067 4.3130 4.3152 23.3039 23.4659 23.519 61.6556 62.8145 63.199 
0.6 4.5728 4.5822 4.5853 23.7773 23.9606 24.021 62.1238 63.3458 63.751 
0.7 4.9134 4.9271 4.9317 24.4012 24.6162 24.687 62.7728 64.0892 64.527 
0.8 5.3703 5.3907 5.3976 25.2983 25.5668 25.656 63.7744 65.2537 65.747 
0.9 6.0272 6.0595 6.0704 26.7946 27.1727 27.299 65.6527 67.4945 68.115 
1 7.0805 7.1374 7.1422 30.1108 30.8063 30.970 71.1455 74.3753 75.653 
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5. CONCLUSION 
 
This paper presents a new method of approximative 

determination of frequency of the tapered cantilever beam 
which can serve as an alternative to relevant approaches 
from [1], [2] and [3]. In such discretization of the flexible 
tapered cantilever beam, a well-developed methodology 
for mechanics of a system of rigid bodies is used for the 
formation of the characteristic problem. It results in 
obtaining a computer-efficient algorithm for determination 
of approximate values of frequencies of the beam. 
Comparison of our method with the results from relevant 
approaches in [1], [2] and [3] was carried out on the 
example from paper [4]. It was shown that the relative 
errors of obtained frequencies in relation to the exact 
values given in paper [4] are smaller for first two 
frequencies if our approach is used than if the approaches 
from [1], [2] and [3] are used. For the third frequency 
approach from [2] give slightly better results. Then the 
results of our approach are compared with the results from 
[5]. In [5], the Initial value method was used for analysis 
of free vibration of the beam, where the Runge-Kutta 
method of numerical integration was used for 
determination of frequencies. That is why this algorithm is 
demanding in terms of computing. It was shown that the 
results obtained by using our approach agree to a 
considerable extent with the results from [5].  

Based on everything previously stated, it is clear 
that the presented method is less demanding in terms of 
computing  than the algorithm presented in [5], and it 
achieves better results than the relevant algorithms from 
[1], [2] and [3] for first two natural frequencies. The 
presented methodology can also be used for treating more 
complex models of flexible beams, frames, etc.  

 However, the question remains how the position of 
the prismatic joint in the rigid multibody model of the 
tapered cantilever beam affects the accuracy of the 
exposed algorithm. We assume that prismatic joint is 
placed in the middle of the first half of the beam. In [1] the 
authors have shown for which partition coefficient p 
algorithm achieved the best accuracy and simple 
approximate model of the beam. This analysis will be the 
subject of further research by authors. 
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